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Abstract—Radiation effects such as soft errors are the major 

threat to the reliability of SRAM-based FPGAs. This work 
analyzes the effectiveness in correcting soft errors of a novel 
scrubbing technique using internal frame redundancy called 
Frame-level Redundancy Scrubbing (FLR-scrubbing). This 
correction technique can be implemented in a coarse grain TMR 
design. The FLR-scrubbing technique was implemented on a 
mid-size Xilinx Virtex-5 FPGA device used as a case study. The 
FLR-scrubbing technique was tested under neutron radiation 
and fault injection. Implementation results demonstrated 
minimum area and energy consumption overhead when 
compared to other techniques. The time to repair the fault is also 
improved by using the Internal Configuration Access Port 
(ICAP). Neutron radiation test results demonstrated that the 
proposed technique is suitable for correcting accumulated SEUs 
and MBUs. 
 

Index Terms— Fault tolerance, field programmable gate 
arrays, radiation effects.  
 

I. INTRODUCTION 
RAM-based FPGAs are attractive to critical applications 
due to their high performance, reduced power 

consumption, and reconfiguration capability. However, 
FPGAs are highly susceptible to radiation effects such as soft 
errors in the SRAM configuration memory. These soft errors 
have a persistent effect and will remain until the restoration of 
the original content. 

The configuration memory of SRAM-based FPGAs is 
arranged into small segments named “configuration frames”, 
and it represents the largest portion of all the memory cells in 
the device. Other factors that increase the susceptibility to soft 
errors are the reduction of the transistor size and the lower 
voltage operations of these SRAM memory cells [1].  

When an ionizing particle flips a single memory cell, the 
event is called Single Event Upset (SEU). Moreover, when it 
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impacts multiple memory cells due to charge sharing, the 
event is called Multiple Cell Upset (MCU). If the multiple 
corrupted bits belongs to the same memory word (or frame for 
FPGAs), the MCU is called Multiple Bit Upset (MBU). In the 
first families of SRAM-based FPGAs, MBU events 
represented a smaller percentage of total Single Event Effects 
(SEEs) [2] [3]. However, in recent technology nodes (65nm 
and beyond) the percentage of MBU events is higher [3]. 
Additionally, the trend is to reduce the technology node in 
future devices, which will increase the MBUs probability of 
occurrence. MBU events can be up to 10% of the total bit 
upsets observed in the configuration memory bits of an FPGA 
fabricated in 28nm technology [4]. 

An effective method to correct bit upsets in the 
configuration memory is memory scrubbing. The original 
configuration memory is restored using the dynamic 
reconfiguration feature of FPGAs. Different scrubbing 
methodologies have been proposed in the literature for Xilinx 
FPGAs [5] based on Error Correction Codes (ECC) or 
configuration data redundancy. In this work, we use a novel 
scrubbing technique (FLR-scrubbing) that can be implemented 
in a coarse grain TMR design. It is based on having each 
redundant TMR domain with the same configuration frame 
information to allow vote out the frames copies to restore 
themselves. This method achieves low area overhead and low 
energy consumption, also a reduced time to repair a bit upset 
when compared to other works in the literature [6], which are 
based on ECC or external reference (golden) memory. 

The effectiveness of this novel scrubbing technique to 
correct multiple accumulated bit upsets in the configuration 
memory is analyzed by fault injection and radiation 
experiments. The FLR-scrubbing technique was implemented 
on a mid-size Xilinx Virtex-5 FPGA device used as a case 
study. 

The rest of the paper is organized as follows: Section II 
presents selected related works. Section III describes the FLR-
scrubbing technique. Implementation results and comparisons 
with other similar works are presented in Section IV. In 
Section V are given the characteristics of the methodology to 
evaluate the effectiveness of the FLR-scrubbing. The analysis 
of the neutron radiation results is provided in Section VI. A 
complementary fault injection campaign is presented in 
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Section VII with the objective of finding the maximum 
number of accumulated bit upsets the technique can correct in 
a determined area. Finally, conclusions and future work are 
discussed in Section VIII.  

II. RELATED WORK 
Fault masking techniques such as Triple Modular 

Redundancy (TMR) are used to improve the radiation 
tolerance of circuits implemented in SRAM-based FPGAs. 
Still, it is necessary to avoid bit upset accumulation in the 
configuration memory with a correction mechanism to 
increase the reliability of the circuit [7]. 

Memory scrubbing is a well-known correction method for 
the configuration memory of SRAM-based FPGAs [5] and it 
can be implemented with different architectures and 
methodologies.  

The circuit that implements the memory scrubbing is 
commonly known as a scrubber, and it can be implemented 
externally or internally to the FPGA as shown in [8]. An 
external scrubber uses external configuration ports, such as the 
SelectMAP (Xilinx) or JTAG port, to access the configuration 
memory.  

On the other hand, internal scrubbers use the ICAP (Internal 
Configuration Access Port) block [9] in Xilinx FPGAs. This 
port has the same interface as the SelectMAP port, but it can 
be accessed from the internal configurable logic. External 
scrubbers are presumed to be more radiation tolerant than 
internal scrubbers since they can be implemented as a rad-hard 
ASIC or in a rad-hard antifuse-based FPGAs. In [8] is 
presented a comparison of the reliability between an external 
and an internal scrubber. Results show that an external 
scrubber has an improved correction capability (corrected all 
SEUs in the configuration memory) and does not present any 
SEFI that required a power cycle in contrast to the results 
obtained from the internal scrubber. However, it is possible to 
apply hardened by design techniques to internal scrubbers to 
improve its reliability as shown in [10] and [11]. 

Fig. 1 depicts two possible scenarios when multiple bit 
upsets occur in configuration frames. When an impinging 
particle corrupts cells belonging to different frames, provoking 
at most one bit upset per frame, the event is called an inter-
frame MBU. When an impinging particle corrupts cells 
belonging to the same frame, provoking multiple bit upsets, 
this event is called intra-frame MBU. This difference is 
important when Error Correction Codes (ECC) techniques are 
applied to repair frames, as the current ECCs usually correct 
single bit upsets and detect at most two upsets per frame. 

Since Xilinx Virtex-4 FPGAs, all FPGAs come with a self-
correction mechanism that uses Single Error Correction 
Double Error Detection (SECDED) ECC and Cyclic 
Redundancy Check (CRC). SECDED is implemented in each 
configuration frame, and CRC is calculated for the whole 
configuration memory. It is calculated the ECC syndrome of 
each frame to find the bit upset position and then correct it. It 
is the fastest method to correct a fault because it only needs to 
read and write one frame. The main drawback of the technique 
is its limited correction capability. Only one upset per frame 

can be corrected and at most two upsets per frame can be 
detected. In other words, SECDED ECC will correct inter-
frame MBUs but only detect intra-frame MBUs. Xilinx offers 
a soft-core named Xilinx SEU Controller [16] to manage the 
self-correction mechanism of Virtex-5 FPGAs. 

In this work, the proposed scrubbing technique can correct 
any multiple bit upset pattern, with equivalent upset repair 
time of the Xilinx self-correction mechanism based on ECC.  

More recently, Xilinx offered a new soft-core named Soft 
Error Mitigation (SEM) Controller for the 7-series family [12] 
that also uses the ICAP interface. This core improves the 
capability of the previous one by combining the SECDED and 
the CRC features. Now it can correct up to two adjacent bit 
upsets in one frame. Moreover, this core offers the possibility 
to correct the configuration memory by replacing it with a 
golden external reference. This reference is a copy of the 
configuration memory, usually stored in an external rad-hard 
memory.  

This core can correct intra-frame MBUs with any number of 
bit upsets by using an external memory reference. However, 
using this memory in each scrub cycle, increments the power 
consumption of the system; and the upset repair time is limited 
by the reading access time of this external memory. Usually, 
the external memory is slower than the FPGA configuration 
memory. For example in our case study, the ICAP port needs 
98 clock cycles running at a maximum frequency of 100 MHz 
to read one frame. Instead, it is required 574 cycles running at 
50 MHz to read one frame from an external flash memory. 
This approach increments the Mean Time to Repair (MTTR).  

Some scrubbing techniques have been proposed to avoid the 
use of an external memory and maintain the capability to 
correct intra-frames MBUs. In [13] is presented a self-
reference inter-FPGA scrubber, so no external memory is 
used. In this case is applied a coarse grain TMR at device-
level, so at least three identical FPGAs are needed to 
implement this technique. Each FPGA has the same 
configuration data. Consequently, the power consumption is 
incremented at least three times. This technique also requires 
another device to hold the inter-FPGA scrubber logic and the 
output majority voter of the outputs of each FPGA.  

In [14], it is presented another approach to protect frames 
against MBUs. An interleaved 2-D parity scheme is used to 
detect upsets in the configuration memory. These extra parity 
bits are stored in BRAM blocks. In this work, the detection 
capability is conditioned to the MBU pattern. Moreover, the 
correction scheme is based on a type of ECC named Erasure 
Codes. In this scheme, the configuration frames are grouped in 

 

Fig. 1.  Examples of Inter-Frame and Intra-Frame Multiple bit upsets. 
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clusters, and for each cluster, a redundant frame with parity 
information is needed. So, once a faulty frame is detected, the 
scrubber needs to read all the frames in the cluster of the 
faulty frame to reconstruct the original information. 
Consequently, the upset repair latency depends on the size of 
the cluster. 

III. PROPOSED FRAME-LEVEL REDUNDANCY SCRUBBING 
TECHNIQUE (FLR-SCRUBBING) 

The proposed scrubbing technique depends on a coarse 
grain TMR design, where each TMR domain has the same 
frame data. So, each configuration frame of the TMR design is 
triplicated in the FPGA. Therefore, any frame of the TMR 
design can be repaired using the information of the other two 
identical frames. In this proposed technique, coarse grain 
TMR is used to mask faults at the circuit level and also to 
enable the correction of the faults in the configuration 
memory. 

The description of the FLR-scrubbing technique is divided 
into two parts:  

• In the first part, the process to generate the coarse grain 
TMR circuit with a customized design flow is detailed. This 
process ensures that the configuration frames in each TMR 
domain are the same. 

• In the second part, a new scrubbing logic that uses the 
information of the triplicated configuration frames to correct 
bit upsets is described. 

 Fig. 2 shows a block diagram of a coarse grain TMR design 
implemented using this technique. 

A. Customized Design Flow 
The TMR design needs a particular placement to obtain the 

same configuration frames for each TMR domain. Also, each 
TMR domain should be implemented in the FPGA with same 
resources and routing. 

The placement of each TMR domain is obtained by 
placement constraints, and it depends on the structure of the 
configuration memory of the target FPGA. In Xilinx FPGAs, 
the configuration memory is structured as an array of 
configuration frames vertically placed in the matrix. One 

frame fits into a single row, and each column may have many 
vertical frames. For example in a Xilinx Virtex-5 FPGA, a 
CLB row and column has 36 frames each one with 1312 bits 
disposed vertically. Consequently, the height of a frame has 
1312 bits, and each row has the height of a frame. TMR 
domains must be placed vertically aligned, and covering an 
integer number of rows, as shown in Fig. 2.  

This technique cannot be applied to the majority voter due 
to the limitations of triplicating the majority voter with three 
identical placements of logic and inputs. So, there are two 
possible solutions to correct upsets in the voters. The first one 
is to have a copy of the majority voter configuration frames in 
a memory and load this frames when needed to restore the 
corrupted frames of the majority voter. The second solution is 
to place the voter outside the FPGA. This option implies the 
use of another device as a rad-hard antifuse FPGA; however, it 
may increase the system complexity and board area, but 
assuring the voter functionality under radiation effects. 

To obtain a coarse grain TMR design, where each TMR 
domain is synthesized, placed and routed in the same manner, 
it is proposed a customized design flow as shown in Fig. 3. 
This design flow is partially based on the Xilinx Standard 
design flow that uses the commercial Xilinx tools to generate 
an FPGA bitstream from a hardware description of the design; 
and it is also based on the RapidSmith tool [15], an academic 
tool to generate Hard Macro Blocks (HMB) that assures that 
each TMR domain has the same configuration frames. 

These HMB are used to implement each of the TMR 
domains because these blocks are already placed and routed 
designs that can be instantiated in an FPGA design. 

The proposed design flow begins with the generation of a 
placed and routed circuit from the original design with the 
Xilinx standard design flow. Then, the RapidSmith tool 
receives the placed and routed circuit in an NCD format and 
creates the HMB with an NMC format. 

The second step is to create a new design project, which 
includes the three instances of the HMB with the placement 
constraints. The voter of the coarse grain TMR design and the 
scrubber circuit can be optionally included in the project 
because they can be implemented outside the FPGA. Xilinx 

 
Fig. 2.  Block diagram of the frame redundancy scheme based on a coarse 
grain TMR design. 
  

 
Fig. 3.  Customized design flow. 
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tools support the combination of HDL designs with HMB to 
generate the final bitstream. 

B. The Scrubbing Technique 
The customized design flow ensures that the three TMR 

domains have the same configuration frames. The FLR-
scrubbing technique uses this information to correct these 
regions. 

The scrubber circuit needs to be configured with the 
location of the three TMR domains. When the scrubber begins 
a scrub cycle, it reads the first frame of each TMR domain. 
Then, the scrubber executes a bit level majority voting of the 
three frames and creates a fault-free (voted) frame. In the best-
case scenario, none of the frames needs to be corrected, so the 
scrubber moves to the next frame position of each TMR 
domain. If any of the three frames is corrupted, the scrubber 
replaces it with the fault-free (voted) frame.  

In the worst-case scenario, three frames are corrupted due to 
the accumulation of bit upsets. The scrubbing technique will 
be able to correct all the upsets if there is no more than one 
upset per each relative bit position, as shown in Fig. 4. Please 
note that the frame from the TMR domain 1 has an MBU, 
which would not be corrected by ECC [16], but because our 
method votes bit by bit, the MBU of the frame from TMR 
domain 1 will be voted out correctly.  

The correct execution of the scrubbing is based on the 
assumption that at most one of the three bits voted is faulty. 
This scenario is expected because the three bits compared by 
the voter are not physically adjacent, so it is very unlikely to 
have multiple bit upsets in two of the three bits. We have not 
observed such cases under radiation to an accumulation up to 
274 bit upsets in average. However, if such unlikely case 
occurs, the scrubber will not detect nor correct the frames and 
golden bitstream must be loaded from an external memory. 

IV. IMPLEMENTATION RESULTS 
The FLR-Scrubbing technique is implemented into a Xilinx 

Virtex-5 FPGA, part XC5VLX50T-FFG1136. This device is 
manufactured with a 65 nm technology, and it has a nominal 
core voltage of 1.0V. It is worth noting that although, in this 
study we consider Xilinx FPGAs, the proposed technique is 
generic and extendable to any SRAM-based FPGA that offers  

 
TABLE I 

AREA COMPARISON RESULTS  

Scrubbing Scheme CLBs BRAMs External 
Memory 

Work in [14] a 1100 (6%) 4 (1%) No 

Xilinx SEU Controller [16] 98 (3%) 1 (2%) No 

Xilinx SEM Controller [12] b 108 (2%) 3 (1%) Yes 

Blind Scrubbing (TMR) 341 (10%) 12 (20%) Yes 

FLR-SCRUBBING (TMR) 113 (3%) 6 (10%) No 
a implemented for a Virtex-6 VLX240T FPGA with 50 clusters and TMR 
redundancy. In this device, one frame has 2,592 bits. 
b implemented for an Artix-7 A100T FPGA without optional features. In this 
device, one frame has 3,232 bits. 

 
configuration memory readback. The scrubber circuit is within 
the FPGA, and it uses the ICAP block to access the 
configuration memory. This block can work at a maximum 
frequency of 100MHz with a 32-bit data interface.  

A. Area Overhead  
The area overhead of the FLR-scrubbing technique is low, 

and it corresponds to the area of the scrubber circuit because it 
does not need any extra memory to store frame parity bits or 
copies of the original frames. When comparing to techniques 
such as [14] that need extra memory to store parity bits or [8] 
[12] that needs external memory to read the original (golden) 
configuration memory, our method can show a good 
advantage. The area overhead of the FLR-scrubbing technique 
is also independent of the size of the FPGA, and it is similar to 
Xilinx SEU Controller [16]. The area of Xilinx SEM 
Controller [12] depends on the size of the FPGA and the 
selected error correction method that can be based on the 
embedded ECC bits only, a combination of ECC and CRC or 
the external golden memory.  

Related works compared in this paper [12],[14],[16] do not 
mention any mitigation technique for the scrubber circuit. In 
our method, we propose to triplicate the scrubber to improve 
the reliability. The presented area considers the triplication of 
the scrubber circuit. Table I presents our results compared 
with previous works. 

B. Time to Repair One Configuration Frame 
The time to repair one frame is the time needed to correct 

one or more bit upsets in one configuration frame. As 
mentioned in section III, in the proposed scheme, not all the 
configuration frames are scanned. Only the configuration 
frames of the TMR circuit are analyzed. These frames contain 
the potential bits that, if corrupted, can generate an error in the 
circuit. In our case, the time to repair one frame depends on 
the time needed to read the three selected frames and the time 
to write the fault-free (voted) frame. 

The work in [14] needs to read a cluster of configuration 
frames to correct one frame. Reducing the number of frames 
per cluster, reduces the time to repair one frame but 
increments the area overhead. 

 
Fig. 4.  Procedure to correct three identical frames with bit-level majority 
voting. 
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TABLE III 
COMPARISON OF ENERGY AND POWER CONSUMPTION FOR THE FLR-SCRUBBING TECHNIQUE AND BLIND SCRUBBING 

  
FLR-scrubbing (TMR) Blind Scrubbing (TMR) 

Parameter FPGA Core Source (1.0 V) FPGA Core Source (1.0 V) Flash Memory Source (1.8 V) All Sources 

Dynamic Power (RMS) 33.24 mW 21.2 mW 3.93 mW 25.13 mW 

Scrub cycle time 3.67 ms @ 50MHz 178.55 ms @ 50MHz 

Energy per scrub cycle 121.9 µJ 3.785 mJ 0.7 mJ 4.485 mJ 

Number of protected 
frames  1386 8376 (all the device) 

Energy to scrub a frame 
(Escrub-frame) 87.9 nJ 451.9 nJ (84.3%) 83.89 nJ (15.7 %) 535.79 nJ 

     
TABLE II 

COMPARISON OF THE TIME TO REPAIR ONE FRAME 

Scrubbing Scheme Characteristics Time to repair 
one frame (ms) 

Work in [14] a Uses BRAM to store 
parity frame bits 0.351 

Xilinx SEU Controller [16] The scrubber is based on 
a PicoBlaze 0.240 

Xilinx SEM Controller [12] b Uses an external memory 
(replace method) 0.012 

Blind Scrubbing (TMR) Uses an external memory 0.021 

FLR-SCRUBBING (TMR) BRAM or external 
memory is not needed 0.005 

a implemented for a Virtex-6 VLX240T FPGA with 50 clusters and TMR 
redundancy. In this device, one frame has 2,592 bits. 
b implemented for an Artix-7 A100T FPGA without optional features. In this 
device, one frame has 3,232 bits. 

The Xilinx SEU Controller [16] should be the fastest 
approach because the procedure to repair one frame needs 
only to read the corrupted frame and use the internal ECC bits 
to correct one single bit upset per frame. However, it is 
implemented with an 8-bit PicoBlaze microcontroller, so the 
performance of the scrubber is reduced. 

The time to access the external memory is slow compared 
to the time to access the internal frame using the ICAP. As 
shown in [17], the relation between both access times can be 
nearly 100 times. Consequently, the time to repair by using 
Xilinx SEM controller [12] is much higher than the FLR-
scrubbing technique as it uses the external memory access.  

The results between the proposed method and other 
approaches are summarized in Table II. 

C. Energy Consumption  
We cannot neglect the power overhead imposed by the 

configuration memory scrubbing. The power consumption of 
the scrubbing process depends on the readback or scrub rate 
and the scrub methodology adopted. So, the energy consumed 
per configuration frame (Escrub-frame) was used as a parameter to 
compare different scrubbing methods. This parameter will 
give us a better idea of the energy efficiency of the technique 
and is independent of the scrub rate or the scrub methodology. 
A detailed description of the process to measure this parameter 
is found in [6].  

We compare the energy efficiency of the FLR-scrubbing 
technique against a blind scrubbing methodology. We decide 

to choose the blind scrubbing methodology as a reference 
point since it implements the simplest scrubbing methodology. 
The blind scrubber implemented uses an external flash 
memory with a 16-bit parallel interface.  

The energy consumed by the FLR-scrubbing technique 
comes only from the FPGA core. On the other hand, the blind 
scrubbing methodology consumes power from the FPGA core 
and the external flash memory.  

The results are summarized in Table III. It is observed that 
the energy consumption to scrub one frame of the FLR-
scrubbing is at least six times less than the blind scrubbing. 
The energy consumption does not depend on the scrubbing 
rate or the methodology. 

In the comparison, the blind scrubber covers all the device 
configuration frames. On the other hand, the FLR-scrubber is 
only correcting a specific area of the FPGA where the 
functional design is placed. It is impossible to cover the whole 
FPGA because the location of the ICAP block and the internal 
scrubber logic prohibits the implementation of the proposed 
customized design flow explained in Section III.A. This issue 
can be solved by implementing the scrubber outside of the 
FPGA. 

V. EXPERIMENTAL METHODOLOGY  

A. Device Under Test (DUT) and Neutron beam  
The FLR-Scrubbing technique was tested into the same 

Xilinx Virtex-5 FPGA, part XC5VLX50T-FFG1136. 
Experiments were performed at Los Alamos National 
Laboratory (LANL), Los Alamos Neutron Science Center 
(LANSCE) Irradiation of Chips and Electronics House II in 
December 2014. The FPGA device was tested at normal 
incidence with an approximated neutron flux of 1.43×106 
(n/cm2×s). The neutron energy spectrum resembles the 
atmospheric one between 1 and 750 MeV [18]. 

B. Radiation test setup  
The board was placed in the radiation chamber and was 

connected to a host computer via two USB connections. The 
first connection is used for the FPGA configuration and 
readback via JTAG while the second connection is used for 
the RS232-C communication with the scrubber. 

The objective of the test is to analyze the efficiency of the 
proposed scrubbing methodology to correct multiple 
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accumulated SEUs and MBUs. Therefore, the scrubber is 
protected with TMR. 

Fig. 5 shows the placement of the scrubber, and the three 
TMR domain zones that the FLR-scrubbing technique 
protects. The scrubber protects an area of 1,386 configuration 
frames, where the TMR design is located. This area represents 
720 CLBs (20 % of device CLBs) and 24 18K BRAM blocks 
(20 % of device BRAM blocks).  

The test procedure starts with the configuration of the 
FPGA, including the scrubber circuit and the TMR protected 
zone. The FPGA is exposed to radiation and to the 
accumulation of bit upsets in the configuration memory. The 
FLR-scrubbing technique is configured with two pre-defined 
scrubbing rate during the test: one of 30 minutes and other one 
of 60 minutes. During the accumulation period, periodic 
readbacks are performed with intervals of 5 minutes to analyze 
the accumulation of upsets. So, once 30 minutes or 60 minutes 
are reached, the FLR-scrubbing technique is activated to 
correct the TMR protected zone.  

In order to save every scrubbing execution in a log file, 
when the scrubber finds bit upsets in the TMR protected zone, 
it transmits to the host computer the frame address of 
corrupted frames. The host PC executes a last readback to 
verify if TMR protected zone was correctly scrubbed and if 
there is no remaining bit upsets. The host PC reconfigures the 
FPGA with the original bitstream and a new run begins. 

VI. NEUTRON RADIATION RESULTS  
 
Experimental results are classified in four cases: 
• Case 1: The scrubber sends a correct report to the host 

PC, and the readback files confirm the right operation 
of the scrubber. 

 
TABLE IV 

CLASSIFICATION OF RESULTS 

  Avg. acc. 
upsets 

Total 
runs 

Case 
1 

Case 
2 

Case 
3 

Case 
4 

Scrub rate 1 
(30 min) 145.7 33 87.8% 6.1% 6.1% 0% 

Scrub rate 2 
(60 min) 274 30 66.7% 26.7% 3.3% 3.3% 

 
• Case 2: The scrubber sends a wrong response to the 

host PC, and the readback files confirm an error on the 
scrubber. 

• Case 3: The scrubber sends a correct report to the host 
PC, but the readback files present a wrong scrubbing 
correction. 

• Case 4: The scrubber sends a wrong response to the 
host PC, but the readback files present a correct 
scrubbing operation. 

 
The percentage of occurrence of the four cases (1 to 4) is 

shown in Table IV. One can see the average number of 
accumulated upsets per radiation test runs, the number of 
radiation test runs and the percentage of occurrence of each 
one of the four cases described above. 

Case 1 represents the correct behavior of the scrubber. In 
this case, the TMR in the scrubber was adequate to mask any 
functional error, and the proposed technique was able to 
correct all the accumulated bit-flips in the protected area. A 
graphical view of readback files before and after the scrubbing 
is applied is shown in Fig. 6.  

Cases 2, 3 and 4 are wrong behaviors of the scrubber. Cases 
2 and 4 are detectable errors since the response of the scrubber 
shows a functional error. It is not possible to diagnose if the 
functional error is in the scrubber circuit or the internal 
configuration controller (ICAP) of the FPGA. Fig. 7 shows a 
representative example of a wrong behavior.  

Case 3 is an undetectable functional error that was only 
observed after the analysis of the readback files. This case is 
the candidate case for finding an example where the scrubbing 
technique is not able to correct or detect a fault when, as 
described in section III.B, more than one bit of the same                                                                                      
f 

 
(a) 

 
(b) 

Fig. 6.  Graphical view of readbacks of a correct run (case 1). The spots are 
bit upsets in the configuration memory. (a) Readback just before the scrubber 
is activated. (b) Readback after the scrubber finished. 
  

 
Fig. 5.  Placement of the TMR scrubber and the three TMR domain zones on 
a Virtex-5 VLX50T.  
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TABLE V 

CROSS-SECTION AND FAILURE IN TIME AT NYC 
  cross-section (cm2) FIT 

Scrub rate 1 (30 min) 4.41E-11 5.73 
Scrub rate 2 (60 min) 6.59E-11 8.57 

Xilinx SEU 
Controller [16] N/A 8.6 

 
relative bits position of the voted frames has an upset. 
However, after the analysis of the readback files, it was not 
found any evidence of such scenario. All the runs, when the 
scrubber failed to correct the configuration memory of the 
protected area, were due to a functional error in the scrubber 
itself or because of a Single Event Functional Interrupt (SEFI) 
in the ICAP block. So, this means that the error was in the 
scrubber and not in the technique itself.  

Table V presents the cross-section and Failures in Time 
(FIT) results of the scrubber circuit considering the three cases 
of functional errors observed during the tests. As expected, the 
reliability of the scrubber is reduced when more bit-flips are 
accumulated. The FIT is obtained considering a flux of 13 
neutrons /(cm2×h) (The New York City reference flux [19]). 
As a reference, it is also mentioned the estimated soft error 
rate of the Xilinx SEU Controller [16]. Please note that in this 
radiation test the focus is to demonstrate the effectiveness of 
the FLR-scrubbing technique and not the reliability of the 
scrubber. Nevertheless, the scrubber reliability is critical for a 
real application. 

VII. FAULT INJECTION ANALYSIS 
The analysis of the results of the neutron radiation 

experiment showed that the FLR-scrubbing technique was not 
defeated due to accumulated bit upsets in the protected area. 
The objective of the fault injection campaign is to determine 
the maximum number of accumulated bit upsets that the 
scrubbing mechanism can correct. 

The fault injector used in this fault injection test is 
described in [20]. The fault injector is also implemented in the 
FPGA and shares the ICAP block with the scrubber circuit. 
The emulated upsets are a combination of random generated  

  
 

TABLE VI 
FAULT INJECTION RESULTS 

Average maximum 
accumulated SEUs corrected 

1136.6 (0.06% of total bits in the 
evaluated area) 

Standard deviation (σ) 562.5 
 

SEUs locations and locations recorded from previously 
accelerated neutron radiation tests. The scrubber protects the 
same area mentioned in the neutron radiation test (1,386 
frames), and the fault injector is constrained to inject faults in 
the same area protected by the scrubbing technique. 

Fig. 8 shows the final placement of the scrubber, the fault  
injector and the three identical regions where the TMR design 
is located.  

The methodology to find the maximum number of 
accumulated SEUs was to inject faults in steps of 10 faults per 
injection and then activate the scrubber to analyze if all the 
faults were corrected. When faults remain after executing the 
scrubbing mechanism, the fault injection campaign is ended.  

One hundred fault injection campaigns were performed, and 
more than 113,600 faults were injected. The results are 
summarized in Table VI. 

The results show that the technique can correct more than 
one thousand faults on average in the protected area. This 
value represents a small percentage of the total configuration 
bits in this area, but it represents a high accumulation time of 
faults in a real environment. 

The maximum number of accumulated bit upsets obtained 
in the fault injection campaign is ten times higher than the bit 
upsets accumulated during the test. These results can explain 
why in the neutron radiation test, we could not find a run 
where the scrubbing technique failed due to the massive 
accumulation of faults in the protected area.  

 
(a) 

 
(b) 

Fig. 7.  Graphical view of readbacks of an incorrect run (cases 2 and 3). (a) 
Readback just before the scrubber is activated. (b) Readback after the 
scrubber finished. 
 
  

 
Fig. 8. Placement of the scrubber, fault injector and the three TMR domain 
zones on a Virtex-5 VLX50T.  
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VIII. CONCLUSIONS AND FUTURE WORK  
We have presented an experimental evaluation of a novel 

scrubbing technique. This technique presents good 
characteristics in terms of area and energy overhead with low 
repair latency compared with other solutions. Radiation 
experiment results and fault injection campaigns have 
demonstrated the effectiveness of the proposed technique to 
correct MBU in the configuration memory. The FLR-
scrubbing technique was able to restore correctly all the 
frames under radiation. However, when upsets occurred in the 
scrubber circuit or the ICAP logic, errors were observed after 
the execution of the scrubbing. Future work has to focus on 
the improvement of the reliability of the scrubber circuit to 
reduce the wrong behaviors showed in the radiation results 
and also some possible fault tolerant techniques in the ICAP. 
A mechanism of self-test before scrubbing may be needed to 
avoid a wrong scrubbing of the configuration memory. 
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